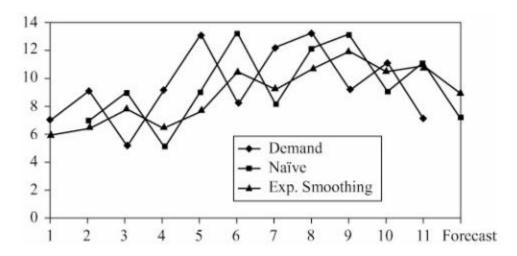
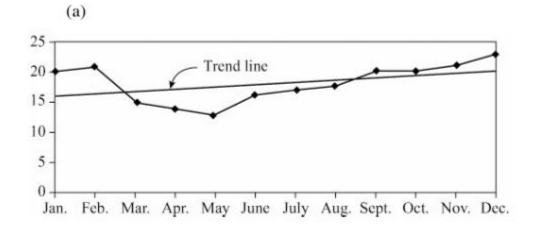

Solution Home Work 2


4.2 (a) No, the data appear to have no consistent pattern (see part d for graph).

	Year	1	2	3	4	5	6	7	8	9	10	11	Forecast
	Demand	7	9	5	9.0	13.0	8.0	12.0	13.0	9.0	11.0	7.0	
(b)	3-year moving				7.0	7.7	9.0	10.0	11.0	11.0	11.3	11.0	9.0
(c)	3-year weighted				6.4	7.8	11.0	9.6	10.9	12.2	10.5	10.6	8.4

(d) The three-year moving average appears to give better results.

4.3	Year	1	2	3	4	5	6	7	8	9	10	11	Forecast
	Demand	7	9.0	5.0	9.0	13.0	8.0	12.0	13.0	9.0	11.0	7.0	
	Naïve		7.0	9.0	5.0	9.0	13.0	8.0	12.0	13.0	9.0	11.0	7.0
	Exp. Smoothing	6	6.4	7.4	6.5	7.5	9.7	9.0	10.2	11.3	10.4	10.6	9.2



4.4 (a)
$$F_{\text{July}} = F_{\text{June}} + 0.2$$
 (Forecasting error)
$$= 42 + 0.2(40 - 42) = 41.6$$

(b)
$$F_{\text{August}} = F_{\text{July}} + 0.2 \text{(Forecasting error)}$$

= $41.6 + 0.2(45 - 41.6) = 42.3$

(c) The banking industry has a great deal of seasonality in its processing requirements

	Y Sales	X Period	X ²	XY
January	20	1	1	20
February	21	2	4	42
March	15	3	9	45
April	14	4	16	56
May	13	5	25	65
June	16	6	36	96
July	17	7	49	119
August	18	8	64	144
September	20	9	81	180
October	20	10	100	200
November	21	11	121	231
December	23	12	144	276
Sum	218	78	650	1,474
Average	18.2	6.5		

[ii] 3-month moving
$$(20 + 21 + 23)/3 = 21.33$$

[iii] 6-month weighted
$$[(0.1 \times 17) + (.1 \times 18) + (0.1 \times 20) + (0.2 \times 20) + (0.2 \times 21) + (0.3 \times 23)]/1.0$$

= 20.6

[iv] Exponential smoothing with alpha = 0.3

$$F_{Oct} = 18 + 0.3(20 - 18) = 18.6$$

 $F_{Nov} = 18.6 + 0.3(20 - 18.6) = 19.02$
 $F_{Dec} = 19.02 + 0.3(21 - 19.02) = 19.6$
 $F_{Jan} = 19.6 + 0.3(23 - 19.6) = 20.62 \approx 21$

[v] Trend $\sum x = 78, \ \overline{x} = 6.5, \ \sum y = 218, \ \overline{y} = 18.17$

$$b = \frac{\sum xy - n\overline{x}\,\overline{y}}{\sum x^2 - n\overline{x}^2}$$

$$b = \frac{1474 - (12)(6.5)(18.2)}{650 - 12(6.5)^2} = \frac{54.4}{143} = 0.38$$

$$a = \overline{y} - b\overline{x}$$

$$a = 18.2 - 0.38(6.5) = 15.73$$

Forecast = 15.73 + .38(13) = 20.67, where next January is the 13th month.

4.7 Present = Period (week) 6.

a) So:
$$F_7 = \left[\left(\frac{1}{3} \right) A_6 + \left(\frac{1}{4} \right) A_5 + \left(\frac{1}{4} \right) A_4 + \left(\frac{1}{6} \right) A_3 \right] / 1.0$$

 $= \left(\frac{1}{3} \right) (52) + \left(\frac{1}{4} \right) (63) + \left(\frac{1}{4} \right) (48) + \left(\frac{1}{6} \right) (70) = 56.76 \text{ patients},$
or 57 patients
where $1.0 = \Sigma$ weights $\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}$

- b) If the weights are 20, 15, 15, and 10, there will be no change in the forecast because these are the same *relative* weights as in part (a), i.e., 20/60, 15/60, 15/60, and 10/60.
- c) If the weights are 0.4, 0.3, 0.2, and 0.1, then the forecast becomes 56.3, or 56 patients.